The treatment of tendon injuries is an important healthcare challenge. Irregular wounds, hypocellularity, and prolonged inflammation impede the rate of healing for tendon injuries. To address these problems, a high-tenacity shape-adaptive, mussel-like hydrogel (PH/ [email protected] &PDA) was designed and constructed with polyvinyl alcohol (PVA) and hyaluronic acid grafted with phenylboronic acid (BA-HA) by encapsulating polydopamine and gelatin microspheres containing basic fibroblast growth factor ( [email protected] ). The shape-adaptive PH/ [email protected] &PDA hydrogel can quickly adapt to irregular tendon wounds, and the strong adhesion (101.46 ± 10.88 kPa) can keep the hydrogel adhered to the wound at all times. In addition, the high tenacity and self-healing properties allow the hydrogel to move with the tendon without fracture. Additionally, even if fractured, it can quickly self-heal and continue to adhere to the tendon wound, while slowly releasing basic fibroblast growth factor during the inflammatory phase of the tendon repair process, promoting cell proliferation, migration and shortening the inflammatory phase. In acute tendon injury and chronic tendon injury models, PH/ [email protected] &PDA significantly alleviated inflammation and promoted collagen I secretion, enhancing wound healing through the synergistic effects of its shape-adaptive and high-adhesion properties.
Home>Instantaneous self-healing and strongly adhesive self-adaptive hyaluronic acid-based hydrogel for controlled drug release to promote tendon wound healing
Instantaneous self-healing and strongly adhesive self-adaptive hyaluronic acid-based hydrogel for controlled drug release to promote tendon wound healing
- Impact factors: 6.8
- Publication: JOURNAL OF MEDICINAL CHEMISTRY
- Author:Dongyi Cao, Ruiying Xi, Hongye Li, Zhonghui Zhang, Xiaoke Shi, Shanshan Li, Yujie Jin, Wanli Liu, Guolin Zhang, Xiaohua Liu, Shunxi Dong, Xiaoming Feng, Fei Wang
- DOI citation-doi:10.1021/acs.jmedchem.4c01558
- Date:2024-08-19T00:00:00.000Z