Sequential Diagnosis and Treatment for Colon Cancer via Derived Iridium and Indocyanine Green Hybrid Nanomicelles

  • Impact factors: 2.65
  • Publication: Evidence-based Complementary and Alternative Medicine
  • Author:Xingcai Zhang, Wei Zhang, Xianhai Chen, Yuli Cai
  • DOI citation-doi:10.1155/2023/1973163
  • Date:2023-01-24T00:00:00.000Z

Indocyanine green (ICG) has been widely explored for the theranostics of tumors. However, ICG mainly accumulates in the liver, spleen, or kidney in addition to in tumors, causing inaccurate diagnoses and impaired therapeutic effects under NIR irradiation. Herein, a hybrid nanomicelle was constructed by integrating hypoxia-sensitive iridium(III) and ICG for precise tumor localization and photothermal therapy in sequence. In this nanomicelle, the amphiphilic iridium(III) complex (BTPH)2Ir(SA-PEG) was synthesized through the coordination substitution of hydrophobic (BTPH)2IrCl2 and hydrophilic PEGlyated succinylacetone (SA-PEG). Meanwhile, PEGlyated ICG (ICG-PEG) as a derivative of the photosensitizer ICG was also synthesized. (BTPH)2Ir(SA-PEG) and ICG-PEG were coassembled by dialysis to form the hybrid nanomicelle M-Ir-ICG. Hypoxia-sensitive fluorescence, ROS generation, and the photothermal effect of M-Ir-ICG were investigated in vitro and in vivo. The experimental results indicated that M-Ir-ICG nanomicelles could locate at the tumor site first and then perform photothermal therapy with 83.90% TIR, demonstrating great potential for clinical applications.

Related Products

$447.00$569.00

$400.00$500.00

$400.00$500.00

$400.00$500.00

$400.00$500.00

$400.00$500.00

$400.00$500.00

$400.00$500.00

EK1392

$350.00$450.00

EK1242

$350.00$450.00

EK1C01

$350.00$450.00

EK1341

$350.00$450.00

EK1334

$350.00$450.00

EK2295

$350.00$450.00

EK224

$350.00$450.00

EK2100

$350.00$450.00

Hot products

Hot citation