The tumor microenvironment (TME) is a heterogeneous ecosystem containing cancer cells, immune cells, stromal cells, cytokines, and chemokines which together govern tumor progression and response to immunotherapies. Methyltransferase-like 3 (METTL3), a core catalytic subunit for RNA N6-methyladenosine (m6A) modification, plays a crucial role in regulating various physiological and pathological processes. Whether and how METTL3 regulates the TME and anti-tumor immunity in non-small-cell lung cancer (NSCLC) remain poorly understood. Here, we report that METTL3 elevates expression of pro-tumorigenic chemokines including CXCL1, CXCL5, and CCL20, and destabilizes PD-L1 mRNA in an m6A-dependent manner, thereby shaping a non-inflamed TME. Thus, inhibiting METTL3 reprograms a more inflamed TME that renders anti-PD-1 therapy more effective in several murine lung tumor models. Clinically, NSCLC patients who exhibit low-METTL3 expression have a better prognosis when receiving anti-PD-1 therapy. Collectively, our study highlights targeting METTL3 as a promising strategy to improve immunotherapy in NSCLC patients.
Home>Targeting METTL3 reprograms the tumor microenvironment to improve cancer immunotherapy
Targeting METTL3 reprograms the tumor microenvironment to improve cancer immunotherapy
- Impact factors: 6.8
- Publication: JOURNAL OF MEDICINAL CHEMISTRY
- Author:Dongyi Cao, Ruiying Xi, Hongye Li, Zhonghui Zhang, Xiaoke Shi, Shanshan Li, Yujie Jin, Wanli Liu, Guolin Zhang, Xiaohua Liu, Shunxi Dong, Xiaoming Feng, Fei Wang
- DOI citation-doi:10.1021/acs.jmedchem.4c01558
- Date:2024-08-19T00:00:00.000Z