THADA inhibition in mice protects against type 2 diabetes mellitus by improving pancreatic β-cell function and preserving β-cell mass

  • Impact factors: 7
  • Publication: Journal of Animal Science and Biotechnology
  • Author:Ma Xinhao, Yang Xinran, Zhang Dianqi, Zhang Wenzhen, Wang Xiaoyu, Xie Kuncheng, He Jie, Mei Chugang, Zan Linsen
  • DOI citation-doi:10.1186/s40104-022-00820-1
  • Date:2023-02-03T00:00:00.000Z

Impaired insulin secretion is a hallmark in type 2 diabetes mellitus (T2DM). THADA has been identified as a candidate gene for T2DM, but its role in glucose homeostasis remains elusive. Here we report that THADA is strongly activated in human and mouse islets of T2DM. Both global and β-cell-specific Thada -knockout mice exhibit improved glycemic control owing to enhanced β-cell function and decreased β-cell apoptosis. THADA reduces endoplasmic reticulum (ER) Ca 2+ stores in β-cells by inhibiting Ca 2+ re-uptake via SERCA2 and inducing Ca 2+ leakage through RyR2. Upon persistent ER stress, THADA interacts with and activates the pro-apoptotic complex comprising DR5, FADD and caspase-8, thus aggravating ER stress-induced apoptosis. Importantly, THADA deficiency protects mice from high-fat high-sucrose diet- and streptozotocin-induced hyperglycemia by restoring insulin secretion and preserving β-cell mass. Moreover, treatment with alnustone inhibits THADA’s function, resulting in ameliorated hyperglycemia in obese mice. Collectively, our results support pursuit of THADA as a potential target for developing T2DM therapies.

Related Products

$447.00$569.00

$400.00$500.00

$400.00$500.00

$400.00$500.00

$400.00$500.00

$400.00$500.00

$400.00$500.00

$400.00$500.00

EK1392

$350.00$450.00

EK1242

$350.00$450.00

EK1C01

$350.00$450.00

EK1341

$350.00$450.00

EK1334

$350.00$450.00

EK2295

$350.00$450.00

EK224

$350.00$450.00

EK2100

$350.00$450.00

Hot products

Hot citation