Early-Responsive Immunoregulation Therapy Improved Microenvironment for Bone Regeneration Via Engineered Extracellular Vesicles

  • Impact factors: 7
  • Publication: Journal of Animal Science and Biotechnology
  • Author:Ma Xinhao, Yang Xinran, Zhang Dianqi, Zhang Wenzhen, Wang Xiaoyu, Xie Kuncheng, He Jie, Mei Chugang, Zan Linsen
  • DOI citation-doi:10.1186/s40104-022-00820-1
  • Date:2023-02-03T00:00:00.000Z

Overactivated inflammatory reactions hinder the bone regeneration process. Timely transformation of microenvironment from pro-inflammatory to anti-inflammatory after acute immune response is favorable for osteogenesis. Macrophages play an important role in the immune response to inflammation. Therefore, this study adopts TIM3 high expression extracellular vesicles (EVs) with immunosuppressive function to reshape the early immune microenvironment of bone injury, mainly by targeting macrophages. These EVs can be phagocytosed by macrophages, thereby increasing the infiltration of TIM3-positive macrophages (TIM3 + macrophages) and M2 subtypes. The TIM3 + macrophage group has some characteristics of M2 macrophages and secretes cytokines, such as IL-10 and TGF-β1 to regulate inflammation. TIM3, which is highly expressed in the engineered EVs, mediates the release of anti-inflammatory cytokines by inhibiting the p38/MAPK pathway and promotes osseointegration by activating the Bmp2 promoter to enhance macrophage BMP2 secretion. After evenly loading the engineered EVs into the hydrogel, the continuous and slow release of EVs TIM3OE recruits more anti-inflammatory macrophages during the early stages of bone defect repair, regulating the immune microenvironment and eliminating the adverse effects of excessive inflammation. In summary, this study provides a new strategy for the treatment of refractory wounds through early inflammation control.

Related Products

EK210

$350.00$450.00

$380.00$480.00

EK201B

$350.00$450.00

EK981

$350.00$450.00

Hot products

Hot citation