Targeting STING Activation by Antigen-inspired MnO2 Nanovaccines Optimizes Tumor Radiotherapy

  • Impact factors: 11.092
  • Publication: Advanced Healthcare Materials
  • Author:Yuan Gu, Subin Lin, Yanxian Wu, Pei Xu, Wen Zhu, Yangyun Wang, Xiaju Cheng, Leshuai W. Zhang, Roland H. Stauber, Yong Wang, Mingyuan Gao
  • DOI citation-doi:10.1002/adhm.202300028
  • Date:2023-03-06

Immune checkpoint blockers therapy can improve the radiotherapy-induced immunosuppression by enhancing interferon secretion, but still suffer from low clinical response rate and potential adverse effects. Mn 2+ -mediated activation of interferon gene stimulator (STING) pathway provides an alternative for combination radioimmunotherapy of tumor. However, it still is a challenge for specific delivery of Mn 2+ to innate immune cells and targeting activation of STING pathway. Herein, a novel antigen-inspired MnO 2 nanovaccine was fabricated as Mn 2+ source and functionalized with mannose, enabling it to target innate immune cells to activate the STING pathway. Meanwhile, the release of Mn 2+ in the intracellular lysosomes can also be for magnetic resonance imaging to monitor the dynamic distribution of nanovaccines in vivo. The targeting activation of STING pathway can enhance radiotherapy-induced immune responses for inhibiting locally and distant tumors, and resisting tumor metastasis. The study proposes an optimized radiotherapy strategy through targeting STING activation of antigen-inspired nanovaccines. This article is protected by copyright. All rights reserved

Related Products

$400.00$500.00

$400.00$500.00

$400.00$500.00

$400.00$500.00

$400.00$500.00

$400.00$500.00

$400.00$500.00

EK1392

$350.00$450.00

EK1242

$350.00$450.00

EK1C01

$350.00$450.00

EK1341

$350.00$450.00

EK1334

$350.00$450.00

EK2295

$350.00$450.00

$350.00$450.00

EK2100

$350.00$450.00

EK1360

$350.00$450.00

Hot products

Hot citation