Purpose To identify the surgical instrument that allows for optimal healing of tongue incisions. Methods An Er:YAG laser was compared with different pulse energies to a conventional scalpel for the incision of mouse tongue tissues. Mice were sacrificed through cervical dislocation at 24, 48, and 72 h postoperatively, followed by extraction of their tongues for incision experiments. The healing of the incisions and expression of inflammation- and pain-related factors in the tongues were compared between the surgical procedure groups. Results In laser-treated mice, tongue incisions healed the fastest when the laser output energy was 60 MJ per pulse. Macrophage chemotaxis toward the incisional area was triggered on the first postoperative day for the 60-MJ group, while the time for macrophage chemotaxis to the surgical area was later in the 80-MJ group. Tumor necrosis factor-alpha expression increased and then decreased in the 80-MJ group; however, it gradually decreased in the 60-MJ and conventional scalpel groups. Prostaglandin E2 expression increased and then decreased in the 80-MJ and conventional scalpel groups but gradually decreased in the 60-MJ group. The expression of transforming growth factor beta 1 gradually decreased in the 60-MJ and 80-MJ groups but gradually increased in the conventional scalpel group. Conclusion Compared with surgical procedures using conventional scalpels, those using an Er:YAG laser with appropriate pulse energies can inhibit inflammation in the incisional area and promote incision healing. The use of an Er:YAG laser with appropriate pulse energies can alleviate intraoperative and postoperative pain in the incisional area.
Home>Histological evaluation of mouse tongue incisions after Er:YAG laser surgery with different pulse energies versus after conventional scalpel surgery
Histological evaluation of mouse tongue incisions after Er:YAG laser surgery with different pulse energies versus after conventional scalpel surgery
- Impact factors: 2.1
- Publication: LASERS IN MEDICAL SCIENCE
- Author:Ou Mingming, Huang Xiaofeng
- DOI citation-doi:10.1007/s10103-023-03852-9
- Date:2023-08-12