The glymphatic system contributes to the clearance of amyloid-β from the brain and is disrupted in Alzheimer’s disease. However, whether the system is involved in the removal of α-synuclein (α-syn) and whether it is suppressed in Parkinson’s disease (PD) remain largely unknown. In mice receiving the intranigral injection of recombinant human α-syn, we found that the glymphatic suppression via aquaporin-4 (AQP4) gene deletion or acetazolamide treatment reduced the clearance of injected α-syn from the brain. In mice overexpressing the human A53T-α-syn, we revealed that AQP4 deficiency accelerated the accumulation of α-syn, facilitated the loss of dopaminergic neurons, and accelerated PD-like symptoms. We also found that the overexpression of A53T-α-syn reduced the expression/polarization of AQP4 and suppressed the glymphatic activity of mice. The study demonstrates a close interaction between the AQP4-mediated glymphatic system and parenchymal α-syn, indicating that restoring the glymphatic activity is a potential therapeutic target to delay PD progression.
Home>Interaction Between the Glymphatic System and α-Synuclein in Parkinson’s Disease
Interaction Between the Glymphatic System and α-Synuclein in Parkinson’s Disease
- Impact factors: 5.4
- Publication: JOURNAL OF ETHNOPHARMACOLOGY
- Author:Wenkai Wang, Shanshan Chen, Shuting Xu, Guangyi Liao, Weihao Li, Xiao Yang, Tingting Li, Huifen Zhang, Huanhuan Huang, Yuqing Zhou, Huafeng Pan, Chuanquan Lin
- DOI citation-doi:10.1016/j.jep.2023.117102
- Date:2023-09-03T00:00:00.000Z