Background Inflammatory bowel disease (IBD) is closely related to higher intracellular oxidative stress. Therefore, developing a novel method to scavenge the harmful reactive oxygen species (ROS) and alleviate colon inflammation to treat IBD is a promising strategy.Methods CeO2@PDA-PEG (CeO2@PP) were synthesized by modifying ceria (CeO2) nanorods with polydopamine (PDA) and polyethylene glycol (PEG). The ROS scavenging ability of CeO2@PP was detected by using flow cytometry and confocal laser scanning microscope (CLSM). The anti-inflammatory ability of CeO2@PP was determined in vitro by treating lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The biocompatibility of CeO2@PP was evaluated in vivo and in vitro. Moreover, the therapeutic effects of CeO2@PP in vivo were estimated in a dextran sulfate sodium salt (DSS)-induced colitis mouse model.Results Physicochemical property results demonstrated that PDA and PEG modification endowed CeO2 nanorods with excellent dispersibility and colloidal stability. CeO2@PP maintained superior enzyme-like activity, including superoxide dismutase (SOD) and catalase (CAT), indicating antioxidant ability. Moreover, in vitro results showed that CeO2@PP with PDA promotes LPS-induced RAW 264.7 macrophages into M2-type polarization. In addition, in vitro and in vivo results showed that CeO2@PP have great biocompatibility and biosafety. Animal experiments have shown that CeO2@PP have excellent anti-inflammatory effects against DSS-induced colitis and effectively alleviated intestinal mucosal injury.Conclusion The nanoplatform CeO2@PP possessed excellent antioxidant and anti-inflammatory properties for scavenging ROS and modulating macrophage polarization, which is beneficial for efficient colitis therapy.
Home>Polydopamine Modified Ceria Nanorods Alleviate Inflammation in Colitis by Scavenging ROS and Regulating Macrophage M2 Polarization
Polydopamine Modified Ceria Nanorods Alleviate Inflammation in Colitis by Scavenging ROS and Regulating Macrophage M2 Polarization
- Impact factors: 7
- Publication: Journal of Animal Science and Biotechnology
- Author:Ma Xinhao, Yang Xinran, Zhang Dianqi, Zhang Wenzhen, Wang Xiaoyu, Xie Kuncheng, He Jie, Mei Chugang, Zan Linsen
- DOI citation-doi:10.1186/s40104-022-00820-1
- Date:2023-02-03T00:00:00.000Z